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Abstract

The pseudospectral method is applied to the free vibration analysis of circularly curved multi-span Timoshenko
beams. Each section of the beam has its own basis functions, and the continuityconditionsat the intermediate supports
as well as the boundary condition are treated as the constraints of the basis functions so that the number of degrees of
freedom matches the number of the pseudospectralexpansion coefficients. The computednatural frequencies are com­
pared with those of existing literature, where it is shown that they are in good agreement.Numerical examples are pro­
vided for pinned-pinned,clamped-clamped and free-pinned boundary conditions for different numbers of sections and
for differentthickness-to-lengthratios.
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1. Introduction

A curved multi-span beam is one of the important
engineering elements in mechanical and civil applica­
tions, as can be found in rail systems and bridges. The
free vibration analysis of curved single-span beams
based on the Timoshenko beam theory has been stud­
ied by using various methods such as the transfer
matrix method [1-3], the dynamic stiffness method [4,
5], the differential quadrature method [6], and the
finite element method [7-9]. The research on the free
vibration of straight multi-span beams based on the
Timoshenko theory also has been carried out by the
Rayleigh-Ritz method [10] and the transfer matrix
method [11]. However, research on the free vibration
of curved multi-span Timoshenko beams has scarcely
been reported. Howson and Jemah computed the
natural frequencies of a circularly curved double-span
Timoshenko beam using the dynamic stiffness
method with the Wittrick-Williams algorithm, where
they did not account for how the continuity conditions
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at the intermediate support were dealt with [12]. In
the dynamic stiffness method the beam is discretized
into a number of elements, and a frequency­
dependent stiffness matrix is derived for each element.
The dynamic stiffness matrix for the overall structure
is assembled from the element matrices. The frequen­
cies at which the determinant of the assembled stiff­
ness matrix vanishes give the natural frequencies.
However, it has a major drawback in that it is prone
to miss the roots.

Recently, Lee applied the pseudospectral method to
the free vibration analysis of straight double-span
Timoshenko beams, where the continuity conditions
at the intermediate support were treated as the con­
straints [13]. The system of equations was such that
only the terms containing the natural frequency were
placed at the right hand side of the equations, so that
standard subroutines could be utilized to find the ei­
genvalues.

In the present study, the pseudospectral method is
applied to the free vibration analysis of circularly
curved multi-span Timoshenko beams.
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in their derivations, which are also employed in this
study.

Typical boundary conditions are

E1 d''ljJ_[GJ +o<.4G)"'+ £l + OJ d¢ _ aAG dw =-w'pj,j)
R' dB' . R' R' dO . R dO '

aAG d1jJ + nAG d'w = -w'pAw
R dO R' dlf' '

_EI+GJdw+GJd'¢_EI¢=_w' i»
R' dB R' dO' R' P p

(4)

1/;(B=8;)=1/;(8=8:) ,

:(B=8~)= ~~(e=8~),

<p(e=8~)=O,

<p(8=87)=0,

w({}=8;)=O,

w({}=8t)=O

at 8 = 0 and B= 8 M , The continuity conditions at

the intermediate support located at B= 8;

(i = 1,2,..,M -1) are represented by

(6)

EI (_2_)2 ,p,,_[GJ +aAG)l + E1+GJ_2_ .,
R' .6.8

i
· R2 /J R' .6.8

i
cp

(~AG 2 I , I'-----w =-w p 1jJ.
R .6.8;

aAG 2..// aAG ( 2.)2 /I 2 A----'" +-- -- w =-w P IV
R .6.8, R' .6.8, '

_£1 +GJ -.3....-1jJ1 + GJ (_2_)' ¢" _ EI 1> =-w'pI 1>
R' .6.8 j R' .6.8i R' r. '

(i=I,2, ..,M)

ZI = 28- 8 i-l -8; = 28-8H -8; E[-l,l]
8; - 8 i _ 1 6.8,

for 6 1_ 1 < {} < 8, (i = 1,2,..,M) (5)

It is convenient that each section of the curved
beam between the supports is represented by a nor­
malized local coordinate Zj

Using the relationship of (5), the governing Eq. (1)
can be rewritten as

where' stands for differentiation with respect to ~j'

Variables 1/;(z;), <p(=,) and w(z;) are approxi­

mated by partial sums as follows:

(2)

(3)

clamped: w= 0, (/)=0, IV = °
dtl: .

Pinned: - =0 0=0 W = 0dB " ,

free:

2. PseudospectraJ formulations for circularly
curved multi-span beams

Consider a circularly curved beam of radius R
and of total angle 8 M , which has M -1 roller sup-

ports at ()= 8 1 (i = l,.·,M -1) so that the curved

beam is divided into M sections as depicted in Fig.
1. The equations of out-of-plane motion in the inter­
val 8/-l < f) < 8; (i = l,..,M) are given as [12]

where w, 1/; and rp are the lateral deflection, the

rotation of the normal line and the torsional rotation,
respectively. E and G are Young's modulus and
the shear modulus, (X is the shear correction factor.
A, I and I p are the cross sectional area of the

beam, the second moment of area and the polar mo­
ment of area, respectively. p is the density, and w

is the natural frequency in radian/second. Howson
and Jemah [12J introduced parameters such as

R

Fig. I. Circularly curved multi-span beam.

K+2

1/;(z;) ~ ~.(z,) = 2::>ik1';,-1 (z;) ,
k=1

K+2

<p(z;)~¢(z,)= I)lkTH(Z,) ,
k=1
K+2

W(Zi) ~ w(z') = 2::>;kTk-1 (z;) ,
k=l

(i=I,2,..,M)

(7)
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where a ik , b'k and Cik are the expansion coeffi­

cients. K is the number of collocation points and
4-1 is the Chebyshev polynomial of the first kind of

degree of k -1, respectively.

Expansions (7) are substituted into (6), and are col­
located at the Gauss-Lobatto collocation points

7r(2j -1)
(=-cos (j=1,2,..,K)

j 2K

to yield

(8)

1 K+2d4.1(1) 1 K~2 dl';,.I(-I)
6e

i
ba ik-;;;:-=L:>.ei+, ~a(i~I)k dz

H

K .... 2

I:bikTk • J (1) = 0 ,
k=l

K..l-'2.

I)(i-i-I)Jk.J (-1) = 0 ,
k=1

K+1.

I>ikl';,.1 (1) = 0 .
k=1

K·:..')

tC(i+I)kJ:.J (-1)= 0
k=1

(12)

'" f~" _[GJ ~ ) } N 2(£[4-GJ) , !'
k,a" R'A8: TH ({,) R" aAG 1;,1(el ) +hb" R'il8, T,., (,,)

K·.} 2cuiG , ) A"2

-1;". RAe, T,'I({')=-'" Plf:.a.r"'({J),
1-···l 20AG I ,.{ -! 4o:AG " 2 K-!ha" R68, 7;.1({,J+ ~c,. R'A8; 7;., (e,) =·w pA'?,;;c"r.., (e,),

,., 2(£1+GJ) K.l f 4GJ £1}
-2:>, R'6A T:.,«,)+;[b" R'AL" r::I(e,)- R'T"'«l)

t"'l I k""l :..J>\7 j

= -w'p1"I;b"T",«!).
'.1

(i=1,2...,M). (J=1,2",K)

(9)

The boundary conditions are

K'~':l g+2

clamped: 2:::a"T,.,(-l)=O, I:b"T,_,(-l)=O,
~~! k=l

1\+1

2:::c"T,., (-1)= 0
*",,1

pinned:

K ...!

2::: C" TH (-1)=0
k""j

(13)

Eq, (9) can be rearranged in the matrix form

where the vectors in (10) are

(10) free:

,.. ,{? dT ( I) }t .a" ;-r - ..L b T, (- 1) =0
'~I 6.8, dz, '" x··1 '

A'.2{ ?h at. (-I)}2::: -a T (-1)+ -" H = 0
x_I Ik ,··1 6.8

1
dz, '

~{a T, (-1)+ 2cl, dT,.,(-l)Lo
hI U ,-, R6.8, dz, f

{o} = {Oil all" a l K bll b,," b,/{ c ll c ll"

elK 021 a'Z2" a·u;, b2! b72 ,. b2K CZ1 Czz .. eZK ••

a U l a.'d2" a ll K b,\fl b\/1. ,- b.HK eM l C.~,:.·· Cw:}T

{o'} = {ali,"I) al(,"» bilK "I) b'I,K-_Z) e"I:+') c'(S.,>,··

}

T

a,YJ(K'+l) a.H \ .....+::) b.~/(J>,..I) b,I/(K+?.l C.l/lK';'l) C"\K",2.l

at 8=O,and

A ,,2 ~: 1-2

clamped: I>If'0"' (1)=0, I:b,,,T,. ,(1)=0,
~""I },:d

j,,' ·...2

2::: C,\" 7: ,(I) = 0
b::j

(11)

The total number of equations in (9) is 31'I'1K,
whereas the total number of unknowns is 3M(K+2).
The remaining 6M equations are obtained from the
continuity conditions and the boundary conditions.
Using the expansions of Eq. (7) the continuity condi­
tions at the intermediate support at 8 = 8 i are ex-

pressed by

K ,·2 K+2

I>jk~-I(1) = I'>(i+l)kl';,.1 (-1) ,
,=1 k=l

pinned:

free:

A'> dT. (1) A'l

2:::0"" _x-_,'_= 0, 2::: bM' T, ., (1)= 0,
'0' dz,\l '~I
K+l

2:::c",T/-l(l)=O (14)
.1:=1

A+'f 2 sr. (1) }2::: ~-j'_1-+b .r. (1) =0
,~, 6.8.11 dz" ,1./+ x-I '

<H{ 2b dT (I)}2::: -a T:. (1)+_If_k-'--'- =0
,~, Uk ,-, 6.8" dz; '

K+2f 2 a: (I)}I: a\(.T,.I(t)+~-·_··I-=0
,~, R6.8", dZ'1
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at B= 8 M , TIle continuity conditions (12) and the
boundary condition set, one at (} = 0 and another at
(} =eM' can be rearranged in the matrix form

(15)

where {o} is a zero vector. Because {S'} in Eq.

(15) can beexpressed by

3. Numerical examples

Howson and Jemah [I2J scaled the torsional rigid­
ity of the curved double-span beam to OJlEI = 102

so that only the natural frequencies corresponding to
predominantly flexural modes appeared. The com­
parison of the natural frequencies computed by How­
son and Jemah [12J to those of the present study is
given in Table 1, where it is shown that they are in

(16)

Eq. (10) is rearranged into

Table 1. Comparison of frequency parameter y'J. of circu­
larly curved double-span Timoshenko beam (8i =11' •

J.. = 23.39, square cross-section. pinned-pinned boundary
condition, v=O.3, 0.=0.83, GJI EI =103 ,K=20)

([pJ- [p'][yr '[W]){8}= w
2 ([Q]- [Q'j[yr l [W]){8}

(17)
The solution of(17) yields an estimate for the natu­

ral frequencies and the corresponding mode shapes.

Mode 1 2 3 4 5 6 7 8 16
Howson

and 2.967 5.394 14.24 17.89 31.2935.57 52.43 56.82 158.8
Jemah
Present

2.965 5.390 14.23 17.873L26 35.54 52.39 56.77 158.6
Study

20 ._'_.-.-._'_._._.-._._._._._._._._....._ ....._._._._._._.
--------------------------

lCO

eo

--mode:1
----- mod*2
_._-_._.- mC>dt 3
._-- moo.4
----- mO.de51
_.._.._."-,- mode 6
-- mode7 I

---------------------------~

100

eo

-- mod.1
- - - _ .. mO-d.2
_._._,_.- mo~e 'J

----~ mod.4
----~ mod~~

-~-,,_._... mo<:!.S
-- mod.7

002 0.03
hJL

OlJ4 'J05 001 0.02 003
h/L

:J 04 005

4Q

(b) M=3(a) M=2

-- mQd.1 1
----~mQde21
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Fig. 2. Frequency parameter "II. of circularly curved multi-span Tlmoshenko beams (8M = ?T , evenly spaced supports, square
cross-section, clamped-clamped boundary condition, v=O.3, a=516, K=20).



2070 J Lee / Journal ofMechanical Science and Technology 21(2007) 2066-2072

good agreement. The numbers given in Table I and
Figs. 2.-..4 are the frequency parameter 11.. defined as

(18)

The natural frequencies of circularly curved multi­
span Timoshenko beams with pinned-pinned,
clamped-clamped, and pinned-free boundary condi­
tions were computed without suppressing the tor­
sional modes for square cross sections and for
K = 20 . The natural frequencies were calculated for
different thickness-to-length ratios ranging from
hIL=O.002 to hIL=0.05 , where h and

L = R8 M are the thickness and the length of the

beam, respectively, and the computed frequency pa­
rameter 1/.. for the lowest seven natural frequencies

are given in Figs. 2.-..4. It is readily seen from Figs.
2--4 that the frequency parameter "II.. increased as

M increased. For the low modes the frequency pa­
rameter "fA remained fairly constant as the thick-

ness-to-length ratio hiL increased regardless of the

boundary condition. On the other hand, for some
higher modes, for example, the seventh mode of
clamped-clamped boundary condition showed an
abrupt decrease of "fA as hiL increased, which

indicated that the predictions of natural frequencies of
the curved multi-span beams based on the Bernoulli­
Euler theory might be erroneous for higher modes
and for larger thickness-to-lengthratios.
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(c) M=4 (d)M=5

Fig. 3. Frequency parameter yJ.. of circularly curved multi-span Timoshenko beams (eM =11' , evenly spaced supports, square
cross-section, pinned-pinned boundary condition, v=0.3, 0.=5/6, K=20).
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Fig. 4. Frequency parameter "'ff.. of circularly curved multi-span Timoshenko beams ( e.\{ = IT , evenly spaced supports, square
cross-section, pinned-free boundary condition, v=O.3, a.=5/6, K=20).

4. Conclusions

The pseudospectral method is applied to the free
vibration analyses of circularly curved multi-span
Timoshenko beams. The pseudospectral method uses
simple series expansions such as the Chebyshev
polynomials. The formulation as well as coding for
computation is straightforward because the pseu­
dospectra! method undergoes a simple collocation
process instead of integration. Basis functions are
assumed for each section of the curved multi-span
beam. The continuity conditions at the intermediate

supports and the boundary condition are considered
as the side constraints, and the set of algebraic equa-

tions is condensed so that the number of degrees of
freedom of the problem matches the number of the
pseudospectral expansion coefficients. Numerical
examples are provided for various thickness-to-length
ratios and for different numbers of sections.
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